NLO Corrections to High Multiplicity Jet
Observables

W. Giele, G. Stavenga and J. Winter

LO on Graphical Processor Units (GPU's)

Defining Exclusive Multi-Jet observable at NLO

NLO on GPU's
- Real Corrections on the GPU

Numerics (timing only) and Outlook

Introduction

Tree-level and one-loop amplitudes can nowadays be
calculated up to very high number of external legs

To combine them in a NLO parton level MC we have to
Integrate over phase space

Throw large computer farms at the problem? Or

- “Redefine the observable”. Make the NLO jet phase
space identical to the LO jet phase space...

- Use new and affordable hardware so the MC can run on
your own PC again...

We are pursuing these two options, such that NLO MC's with
many jets can run on a single CPU/GPU PC or a multiple
CPU/GPU board system...

For now results are with gluons only and in Leading Color.

LO on GPU's: Hardware

Idi ' O arXiv:1002.3446 [hep-ph]
IQ;% Cf:(-)lrofgulr\lggj;itg%ga GPUls a plug-n (vircol.fnal.gov/TESS.html)

The Tesla chip is designed for numerical _
applications and programmable in GPU Computing
C/limited C++.

The chip has 30 multi-processors (MP's),
each with 1024 processors (threads).

For us the limiting factor is the fast on- ;gﬂ
chip shared memory of 16,384 32-bit PCIl -
registers per MP (accessible by all Express 20

threads on the MP).

$1300 from Amazon.com
(There is 4 Gb off-chip slow access Power: 200W @ peak preformance

memory we use for 1/0 only.)

LO on GPU's: Programming Principles

All 30x1024=30, 720 threads execute the same instructions (threads
can skip ahead and wait for other threads to catch-up using if
statements etc).

Each thread has an unique number (for input/output etc)

A MC generator is trivially parallelizable as the evaluation of each
event executes the same instructions using different input (e.g.
seeds for the random number generator or momenta).

So, in principle we can run 30,720 MC generators in parallel, each
running N events (a speed up of 30,000!).

However, fast accessible memory is limiting the number of parallel
events.

Recursion relations perfect for GPU (memory efficient & algorithmic

simple). For GPU usage in diagrammatic calculations see
Hagiwara, Kanzaki, Okamura, Rainwater, Stelzer (arXiv:0909.5257 [hep-ph],
arXiv:0908.4403 [physics.comp-ph])

LO on GPU's: Memory usage

* The n-gluon recursion relation needs n momenta and n*(n-1)/2
currents for a total of n*(n+1)/2 single precision 4-vectors.

 This means we need (4*4)*n*(n+1)/2 bytes of fast accesible
memory per event.

« The means 16,384/(8*n*(n+1)) events per MP.

n 41 5| 6| 7| 8| 910 |11 | 12

events/MP 102 | 68 | 48 | 36 | 28 | 22 | 18 | 15 | 13
threads/event | 10 | 15 | 21 | 28 | 36 | 45 | 55 | 66 | 78

Table 1: The number of n-gluon events, which can be simultaneously executed on one MP (and is
equal to 2048/[n x (n+ 1)]) and the number of available threads per event (equal to n x (n+1)/2).
The total number of events evaluated in parallel on the Tesla chip is 30x (events/MP).

LO on GPU's: Timing A0 Phenon() 14

940 Processor (3 GHz)

-
n | TSPY (seconds) | P,(3) || TSPV (seconds) | P,(4) || Gn

2.975 x 107® 8.753 x 1076 294
4.438 x 1078 0.91 1.247 x 107° 0.87 | 281
8.551 x 1078 1.03 1.966 x 1077 0.93 || 230
2.304 x 10~ 1.19 3.047 x 107° 0.96 | 132
3.546 x 1077 1.01 4.736 x 107° 0.98 || 133
4.274 x 1077 0.94 7.263 x 107° 0.99 || 170
10| 6.817x 1077 1.05 1.044 x 1074 0.99 || 153
11| 9.750 x 10~7 1.02 1.529 x 104 1.00 || 157
12 | 1.356 x 1079 1.02 2.129 x 10~ 1.00 || 158

© 0 N O Ot =

Table 2: The GPU and CPU evaluation times per event, TPV and TPV, given as a function
of the number n of gluons for gg — (n — 2) g processes. The polynomial scaling measures are
also shown, for the GPU, P,(3), and for the CPU, P,(4). The P,(m) are defined as P,(m) =

[(n—1)/n] x %/T,/T,_1 . The rightmost column finally displays the gain G = T ¥V /TGFPU.

LO on GPU's: Distributions

Kleiss, Stirling, Ellis
 Rambo generated events for 2g-->5g and 2g-->7g in large color
limit at 14 TeV (switching to e.g. Haag would dramatically

improve statistics). Van Hameren, Papadopoulos:hep-ph/0204055
o Cuts: Pt(jet)>60 GeV, |eta(jet)|<2; R(jet,jet)>0.4
Normalized Hy distribution for 7g Normalized Hy distribution for 9g
L o, =(6.356(12))x10° pb 10 o,=(4.38(11)) x10° pb
2 N, =1.08x10" 1 N, =6.6x10"
10" 3 hours on GPU | 107 2.2 hours on GPU

10 17 days on CPU 44 15 days on CPU

10" 10°
10 10
107 10
1072 107
1072 107

10 10°
0 2000 4000 6000 8000 10000 1200014000
(GeV)

0 2000 4000 6000 8000 10000122&3&03&)

Exclusive Multi-Jet Final States at NLO

* We view perturbative jets as opague (not as
one or two partons).

* That is, we integrate out all physics inside the
jet cones. This makes the perturbative
calculation valid (for appropriate jet cuts).

* The perturbative calculation estimates the
correlations between the different jet momenta.

* Making the jet transparent requires for example
a shower MC.

LO/NLO et phase space

* By defining jets in such a way that the NLO and
LO jet phase space are identical we achieve:

- Implicit removal of many potential large logs

- Each exclusive jet final states have well defined
LO and NLO weight (all cancellations occur).

- Defines “matrix element methods” used by
experiments at NLO.

- Real radiation integral is now 2+1 dimensional.
We can go to very high multiplicity jet final
states.

* Price to pay Is a small augmentation of jet
algorithm.

Defining LO/NLO et phase space

* For final state jets the augmentation is minimal:

- Apply standard 2->1 clustering according to cut
measure R(p1,p2). Massive cluster p12=pl+p2

- Find recoller p3 by minimizing R(p1,p2;p3)
(eg R(p1,p2,p3)=R(p1,p3)*R(p2,p3))

- Re-scale p12 and p3 such that p12 becomes
massless: p3=a*p3; p12=pl2-a*p3 (a=s12/s123)

LO jet phase space

A jet observable is simply calculated from the exclusive jet
Cross section:

do , d\") o

The LO exclusive jet cross section is given by:

d™)]
d.J, - .C.T;OJH — /dPS(Pl- cosp) O(J —p1) - 0(Jn — pn) MO (py, Pn)

2

MOCT, LT

NLO jet phase space

The NLO exclusive jet cross section is now given by:
d(n)UNLO

dJy---dJ,
/dPS(Pl: e :?)-:1-)5(J1 — pl) S 5(}?2 — pn)

JM(O)(pl-, . -,pn) |

JM(O)(,J1= ‘e e s Jn)

! (1 LK, .Jn_)) (2.6)

Each jet phase space point gets a “K-factor” correcting the LO prediction. The “K-factor”

is given by
2 ~ -

: 1o ([_M(OJ . ,M”“] (p1. ... ,p.n))

MO (py, Pn)

JM{O)(pl: . :pn)

)
§ o~ o~ —~ = = . = 0 o~ o~ —~ -

> / dPS(Pa; Drs Polpa: pb) O(Rary < Reur)0(Rapy = min Rigy,) MO (B, Dy Dos P1+ -+« s n)

171K
a,b J
. .)) fz-\' 7
_ 11 .7)
c Only - dlm Integra.l’\kdps(ﬁl.sﬁr:ﬁb‘p&:pb) — 1h2 . d Sar dg}r‘b 9(,":{13/' > S-m‘i-n)g(grb > 5??}.{.?1)'9(-,5:0.3/' + z":rb < Sab)
independent of # of jets 167= sap 2.8

o~

NLO jet phase space generator

 We now write the 2->3 brancher which iIs the exact
iInverse of the jet algorithm.

* This allows us to MC over the real radiation phase
space for a fixed exclusive jet phase space point.

* Time consuming to evaluate virtual:
- Generate M jet-phase space points with LO weight

- Un-weight events to give N<<M events< | 2reirenass

have this already

- Calculate “K-factor” for un-weighted jet events
(should give weights around 1).

- (E.g. 100,000 LO un-weighted PP--> 12 jet events
requires 100,000 virtual evaluations,)

Jet Phase Space with Initial State Radiation

Stewart, Tackmann, Waalewijn

» Use crossing functions (--> beam jets), xvoreoerieren

Giele, Glover, Kosower: hep-ph/9302225

 The beam jet axis Is aligned with the beam
particles (not the integrated out internal partons).

* Simple augmentation to jet algorithm:

— Cluster as described before for final states,
Including incoming parton.

- Sometimes partons are cluster with incoming
parton -> beam |et.

- Apply Pt-boost to final jet final state such they are
Pt-balanced.

- We now integrate out automatically the initial

State rad |at|0n I (Resummation calculations live in this phase space

as it adds radiation in the opaque jet cones without
changing the jet kinematics)

Executed on a TESLA C1060 GPU, in
parallel with the CPU evaluation of virtual

NLO timing

/

J. Winter and W. Giele
arXiv:0902.0094 [hep-ph]
On a AMD Phenom(tm) Il X4
940 Processor (3 GHz)

real events/virtual event

1.6 x 102
4.7 x 1072
1.1 x 1071
2.4 x 1071
4.7 x 1071
8.7 x 1071
1.5 x 10°
2.7 x 10°
4.5 x 10°
7.5 x 10°

of jets || time/real event (sec) | time/virtual event (sec)
2 6.9 x 1019
3 2.1 x 107"
4 3.7x 1077
5 7.2 x 1077
6 1.0 x 10~®
7 2.0 x 1078
8 3.3x107°
9 9.8 x 1078
10 7.4x107°
11 1.7 x 1077
12 1.9 x 1077

1.2 x 10!

6.7 x 107
2.2 x 107
3.0 x 107
3.3 x 107
4.7 x 107
4.4 x 107
4.5 x 107
2.8 x 107
6.1 x 107
4,4 x 107
6.4 x 107

Real diagram ~20x faster than LO diagrams!
(only 3 momenta change/branching).
Linear complexity algorithm for real events!!!

Timing and virtual

Time 1s 100% dominated by virtual
A speed-up with a factor of ~1000 is desirable

A factor of ~10 is trivially obtained (let GPU
calculate tree-level blobs)

"he next factor of 100 requires a modification in
the on-shell methods for GPU implementation

This is In progress, final GPU implemented
virtual should be 100-1000 times faster.

Current speed: e.qg. ~20,000 PP--> 10 jets/day

Timing and Hardware

e Hardware:

- Farming with the S2050 GPU rack boards:

 We run at 16x the time from the table.
(~300,000 PP-->10 jets/day at NLO.)

- New chips come out regularly, the Fermi chip:
* has 4x more on-chip memory --> 4x more events

In the same time
e 7x double precision speed...

~2,000,000 pp->10 jets/day

 Full c++ hardware support--> simplifies coding

_ W (almost) doubling # of cores --> 2x more events
et — New chips will dramatically increase the
capabillities for many generations to come.

Timing and Outlook

e Given the exclusive definition of jet observables and
GPU integration over real phase space we can go to
very high multiplicities, eg 2->12, within reasonable time
on a desktop (order of a day or two of running on a
GPU). Speeds will further increase dramatically in the
coming months/years...

e Next In the line:

- Virtual on the GPU (in progress)

- Color-dressed based color expansions on the GPU,
keeping polynomial complexity (in progress)

- Adding quarks in recursion (external and internal)

- Adding external vector bosons, Higgs,... In recursion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

